

The development of a European surveillance system for healthcare-associated infections

Carl Suetens

Surveillance and Response Support Unit European Centre for Disease Prevention and Control

Second Global Ministerial Summit on Patient Safety, Bonn, 29-30 March 2017

History of standardised surveillance of healthcare-associated infections in the EU

- HELICS (Hospitals in Europe Link for infection control through surveillance)
 = collaboration of national/regional surveillance networks: first initiative in 1994, funding discontinued
- 1998: Decision 2119/98 EC: epidemiological surveillance and control of communicable diseases in Europe -> HELICS II: assess needs
- 2000-2004: HELICS III-IV (EU funded): surveillance of Surgical Site Infections and ICU-acquired infections

http://ipse.univ-lyon1.fr

- 2005-2008: Continued HELICS surveillance as workpackage of IPSE (Improving Patient Safety in Europe, EU funded)
- 1/7/2008: transition IPSE & HAI surveillance coordination to ECDC Stockholm

2016: ECDC HAI-Net network, 5 components

Why do we need standardised protocols?

- HAI surveillance = key component for HAI prevention, especially as part of surveillance network
 - Use of same methods ⇒feedback of risk-adjusted indicators for inter-hospital comparisons as measure of own performance
- 2007: ECDC external evaluation of EU-funded IPSE (Improving Patient Safety in Europe) network

"The European HAI surveillance needs to cover **other types of nosocomial infections** besides surgical site infections and ICU-acquired infections in order to **estimate and monitor the complete HAI disease burden**."

"Develop common HAI point prevalence survey (PPS) protocol & strategy"

"Define basic common indicators for evaluation of HAI control and prevention programmes"

EU Council Recommendation of 9 June 2009 on patient safety, incl. the prevention and control of HAIs (2009/C 151/01)

- "Adopt and implement a strategy ... for the prevention and control of HAIs...:"
 - (c) establish or strengthen active surveillance systems by:
 - (i) at national or regional level:
 - organising prevalence surveys at regular intervals, as appropriate;
 - surveillance of targeted infection types to establish national reference data, accompanied by process and structure indicators to evaluate the strategy;
 - using, where appropriate, surveillance methods and indicators as recommended by ECDC and case definitions as agreed upon at Community level in accordance with the provisions of Decision No 2119/98/EC;

Development of a new HAI surveillance component: steps

- 1. Review of existing protocols, identify methodological differences
- 2. Meeting with Member States experts to discuss strategy
- Meetings and teleconferences with Member States experts to discuss and agree on objectives, protocol, timeline
- 4. Development of data collection tools (protocol, forms, software)
- 5. Test the feasibility of the protocol and adapt it accordingly
- 6. Conduct (outsource) scientific studies for additional evidence
- 7. Develop training materials, train the trainers
- Roll out the new protocol, provide helpdesk during national training and data collection
- 9. Feedback: hospital reports for participating hospitals, national results
- 10. European report

Example: ECDC PPS of HAIs and antimicrobial use in acute care hospitals

Step 1: review of point prevalence surveys of HAI in Europe, 2008

Mean HAI prevalence 7%

→ Mean HAI incidence 5%

4.1M patients with HAI, 37 000 direct deaths

Step 1. Review of methodological differences of national PPSs of HAI in EU countries, 2008

Methodological difference	%	Countries (1)
Case definitions		
Diagnostic related groups	12%	LV, SE
CDC, modified	12%	FR, NL, (UK)
CDC, unmodified	77%	Other
Imported HAI included	47%	DK,ES,FI,FR,IE,NL,SE,UK
Included infections		
All infections	53%	BE, EL ,IT,LT,LV,NL,PT,SE,SI
Only main infection types (2)	12%	NO, DK
Exclusion of secondary bloodstream infections	24%	UK, IE, FI, DE
Exclusion of asymptomatic bacteriuria	12%	ES, FR
Data collection type / workload		
Aggregated numerator and denominator	12%	NO, DK
Patient-based numerator, aggr. denominator	12%	SE, LV
Patient-based numerator and denominator	77%	Other
Exclusion of specific patients or specialties	18%	FR, NL

⁽¹⁾ More recent PPSs available from the following countries: SE, DK, PT, NL, NO, ES, LT, PL.

(2) Pneumonia, bloodstream infection, urinary tract infection, surgical site infection.

Step 2 and 3. ECDC PPS of healthcare-associated infections and antibiotic use in acute care hospitals: meetings

- ** Step 2. Strategic joint IPSE/EARSS/ESAC meeting Jan 2009: Integration protocol of former ESAC hospital PPS for antimicrobial use, Study EU vs CDC HAI case definitions
- **Step 3**. Meetings and teleconferences with experts:
 - PPS I protocol: 7 meetings (↓), PPS II protocol: 5 meetings, 7 teleconferences
 - Total 229 experts from 27 EU Member States, 2 EEA/EFTA countries, 7 EU (potential) candidate and 8 neighbourhood countries, CDC Atlanta, WHO regional office Europe, European Commission, ESICM, ESCMID, ESAC project, ECDC

Step 3. Decision process during meetings

ECOC BURGIPAN CENTRE FOR DEBUG PREVENTION

- Collect comments by email prior to meeting
- Objectives, timeline (4 waves, every 5 years), options (light, standard): consensus
- Variables, definitions...: discussion, voting if needed

- To estimate the total burden (prevalence) of HAI & antimicrobial use
- 2. To **describe patients, invasive procedures, infections** (sites, micro-organisms including markers of antimicrobial resistance) and **antimicrobials** prescribed (compounds, indications)
 - By type of patients, specialties or healthcare facilities
 - By EU-country, adjusted or stratified
- To describe key structures and processes for the prevention of HAIs and antimicrobial resistance at the hospital and ward level in EU hospitals

	HAI 1				
Case definition code					
Relevant device (3)	O Yes O No O Unknown				
Present on admission	O Yes O No				
Date of onset (4)	1 1				
Origin of infection	O current hospital O other hospital O other origin/ unk				
HAI associated to current ward	O Yes O No O Unknown				
If BSI: source (5)					
		AMR P			
	MO code	AM (6)	SIR	D R	
Microorganism 1					
Microorganism 2					
Microorganism 3					

Step 4. Development of ECDC PPS tools: protocol, forms, free software for hospitals

Step 5. Test the feasibility of the protocol. ECDC Pilot PPS, June-October 2010

The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use

P Zarb^{1,2}, B Coignard³, J Griskeviciene⁴, A Muller², V Vankerckhoven², K Weist⁴, M M Goossens⁵, S Vaerenberg⁵, S Hopkins⁶, B Catry⁵, D L Monnet⁴, H Goossens², C Suetens (carl.suetens@ecdc.europa.eu)⁴, National Contact Points for the ECDC pilot point prevalence survey⁷, Hospital Contact Points for the ECDC pilot point prevalence survey⁷

- Pilot ECDC PPS support contract outsourced to University of Antwerp, InVS Paris, IPH Brussels (2010)
- 23 countries, 66 hospitals, 19 888 patients
- HAI: 7.1%, Antimicrobial use: 34.6%
- Protocol workload/100 patients (data collection and data entry)
 - **Light** (unit-based) option (16 hospitals): **2.5 days** (20 hours)
 - Standard (patient-based) option (50 hospitals): 4 days (32 hours)

Step 6. Outsource studies for additional evidence

Hansen et al. Antimicrobial Resistance and Infection Control 2012, 1:28 http://www.aricjournal.com/content/1/1/28

RESEARCH

Open Access

Concordance between European and US case definitions of healthcare-associated infections

Sonja Hansen^{1*}, Dorit Sohr¹, Christine Geffers¹, Pascal Astagneau², Alexander Blacky³, Walter Koller³, Ingrid Morales⁴, Maria Luisa Moro⁵, Mercedes Palomar⁶, Emese Szilagyi⁷, Carl Suetens⁸ and Petra Gastmeier¹

 Concordance study EU vs CDC HAI case definitions (2009 - Charité University Medicine, Berlin)

Hansen S, et al. Antimicrobial Resistance & Infection Control 2012;1:28.

A pilot validation in 10 European Union Member States of a point prevalence survey of healthcare-associated infections and antimicrobial use in acute hospitals in Europe, 2011

J S Reilly^{*}, L Price (l.price@gcu.ac.uk)^{*}, J Godwin^{*}, S Cairns^{*}, S Hopkins^{*}, B Cookson^{3,}*, W Malcolm^{*}, G Hughes^{*}, O Lyytikaïnen^{*}, B Coignard⁴, S Hansen^{*}, C Suetens^{*}, National Participants in the ECDC pilot validation study⁹ PPS validation pilot study (Glasgow Caledonian University, 2011)

Reilly J, et al. Euro Surveill. 2015; 20(8).

Hospital organisation, management, and structure for prevention of health-care-associated infection: a systematic review and expert consensus

Walter Zingg, Alison Holmes, Markus Dettenkofer, Tim Goetting, Federica Secci, Lauren Clack, Benedetta Allegranzi, Anna-Pelagia Magiorakos, Didier Pittet, for the systematic review and evidence-based guidance on organization of hospital infection control programmes (SIGHT) study group*

Despite control efforts, the burden of health-care-associated infections in Europe is high and leads to around 37000 deaths each year. We did a systematic review to identify crucial elements for the organisation of effective infection-prevention programmes in hospitals and key components for implementation of monitoring. 92 studies

Lancet Infect Dis 20: Published Online November 11, 2014 Systematic review on organisation of hospital infection control programmes (SIGHT study, HUG, 2010)

Zingg W, et al. Lancet Infect Dis. 2015 Feb;15(2)

Step 6/2. Outsource national validation contracts

→ AF33 (Feb 2013): "Include national validation surveys in PPSs"

Step 7. Training

- Training curriculum developed in 2010 (outsourced, coordinated by HPA, London)
- Train-the-trainer course: London, March 2011 (2 participants from each country)
- On average: 3 courses of 7.25 hours organised per country
- 104 participants/country (median 78, range 5-436)
- Estimated number of hospital staff trained in PPS methodology: 2800 people

Step 8. Roll out final protocol, helpdesk

National PPS coordination: median 4 experts, 59 expert-days

- ECDC Questions and answers forum
- Data from 1149 hospitals/30 EU/EEA countries submitted to ECDC (TESSy)

Step 9. Data analysis, feedback results at hospital and national level

- Hospital feedback reports (24 pp) sent by ECDC to national coordinator within 1-2 weeks after data submission to ECDC
- Detailed hospital results versus national and EU results, incl. standardisation
- Possible in local language

		N hosp	EU			
	Hospital H	EU	mean/%	P25	P50	P75
III. IPC Programmes						
III.1. IPC team						
Number of FTE infection control nurses	4	271	1.5	0.75	1	2
N FTE infection control nurses/250 beds	1.06	271	1.9	0.86	1.16	2
Number of FTE infection control doctors	0.5	265	0.5	0.1	0.25	1
N FTE infection control doctors/250 beds	0.13	265	0.8	0.1	0.32	1
III.2. IPC plan and report						
Annual IPC plan approved by CEO	1	269	79.2			
Annual IPC report approved by CEO	1	265	80.4			
III.3. Microbiology/diagnostic performance						
Number of blood culture sets/year	5970	258	2111.0	86	727	2567
Number of blood culture sets/1000 pt-days	28.7	257	19.7	4	12.6	24
Number of stool tests for CDI/year	707	249	381.0	8	110	396
Number of stool tests for CDI/1000 pt-days	3.4	248	3.6	0.3	1.6	4
Microbiology support during weekends						
Microbiology on Saturdays, clinical tests	1	259	90.0			
Microbiology on Saturdays, screening tests	1	249	82.3			
Microbiology on Sundays, clinical tests	1	244	77.9			
Microbiology on Sundays, screening tests	1	233	69.5			

Table III. Distribution of healthcare-associate	ed infection					
		Hospital				Total EU (n:
	N pts (1)	Pr% (95%CI) (2)		Rel% (4)	N pts (5)	Pr% (95%CI) (6
Total	35	7.0% (4.9-9.6)	35	100%	3285	5.4% (5.3-5.6)
Pneumonia	8	1.6% (0.7-3.1)	8	22.9%	896	1.5% (1.4-1.6
PN1 (Pneumonia, clinical + positive quantitative co		0.0% (0.0-0.7)	0	0.0%	99	0.2% (0.1-0.2)
PN2 (Pneumonia, clinical + positive quantitative co		0.0% (0.0-0.7)	0	0.0%	43	0.1% (0.1-0.1
PN3 (Pneumonia, clinical + microbiological diagno	0	0.0% (0.0-0.7)	0	0.0%	41	0.1% (0.0-0.1
PN4 (Pneumonia, clinical + positive sputum culture	2	0.4% (0.0-1.4)	2	5.7%	165	0.3% (0.2-0.3)
PN5 (Pneumonia - Clinical signs of pneumonia with	6	1.2% (0.4-2.6)	6	17.1%	496	0.8% (0.8-0.9)
NEO-PNEU (Pneumonia in neonates)	0	0.0% (0.0-0.7)	0	0.0%	19	0.0% (0.0-0.0
PN-Nos (Pneumonia, category not specified/unkno	. 0	0.0% (0.0-0.7)	0	0.0%	33	0.1% (0.0-0.1
Other lower respiratory tract inf.	4	0.8% (0.2-2.0)	4	11.4%	136	0.2% (0.2-0.3)
LRI-BRON (Bronchitis, tracheobronchitis, bronchio	4	0.8% (0.2-2.0)	4	11.4%	105	0.2% (0.1-0.2
LRI-LUNG (Other infections of the lower respirator	0	0.0% (0.0-0.7)	0	0.0%	30	0.0% (0.0-0.1
LRI-Nos (Lower respiratory tract infection, other the	0	0.0% (0.0-0.7)	0	0.0%	1	0.0% (0.0-0.0
Surgical site infections	4	0.8% (0.2-2.0)	4	11.4%	573	1.0% (0.9-1.0
SSI-S (Surgical site infection, Superficial incisional	1	0.2% (0.0-1.1)	1	2.9%	179	0.3% (0.3-0.3)
SSI-D (Surgical site infection, Deep incicional)	Observed H	0.6% (0.1-1.7)	3	9 69/	211	0.3% (0.3-0.4
Urinary tract infections UTI-A (symptomatic urinary tract infe® \$8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Expected H 6.8% (P 8		0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 0	10	0 12 14
CRI2-PVC (General PVC-related infect	▲ Hospital H • Other PPS hospitals: lines=median					
0	Observed vs predicted (expected) prevalence, based on patient risk factors					
		. (,		

Step 10. ECDC PPS report

ECDC point prevalence survey: healthcare-associated infections still a major public health problem, one in 18 patients in European hospitals affected

04 Jul 2013

The first Europe-wide point prevalence survey on healthcare-associated infections and antimicrobial use estimates that on any given day, about 80 000 patients - or one in 18 patients - in European hospitals have at least one healthcare-associated infection.

Conducted in more than 1 000 hospitals in 30 European countries, the survey provides the most comprehensive database on healthcare-associated infections and antimicrobial use in European acute care hospitals to date. The data are published as a report and also available online as an interactive database.

Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011-2012 🔎 Questions and answers: Point prevalence survey of healthcare-associated infections and antimicrobial use in European hospitals Summary: Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals Press release: F Each day, one in 18 patients in European hospitals has a healthcare-associated infection: ECDC estimates Interactive database: HAI-Net PPS interactive database Infographic:

Development of a new HAI surveillance component: 10 steps

- 1. Review of existing protocols, identify methodological differences
- 2. Meeting with Member States experts to discuss strategy
- 3. Meetings and teleconferences with Member States experts to discuss and agree on objectives, protocol, timeline
- 4. Development of data collection tools (protocol, forms, software)
- 5. Test the feasibility of the protocol and adapt it accordingly
- 6. Conduct (outsource) scientific studies for additional evidence
- 7. Develop training materials, train the trainers
- Roll out the new protocol, provide helpdesk during national training and data collection
- 9. Feedback: hospital reports for participating hospitals, national results
- 10. European report

Process 11: recruitment of countries, 2nd ECDC PPS

- Interest for participating countries and hospitals: compare HAI and antimicrobial use, WHO core IPC components, TATFAR antimicrobial stewardship indicators, identify priorities e.g. for surveillance
- Strong recommendation (EU Commission and ECDC Advisory Forum)
- EU legislation:
 - Decision 1082/2013/EU of European Parliament and the Council
 - Council Recommendation 2009/C 151/01 (Patient safety incl. HAIs)
- Currently: 28 EU/EEA countries, 5 EU (potential) candidate countries

Acknowledgments

EUROPEA CENTRE FOR DESASS PREVENTION

Pilot PPS support

H Goossens, P Zarb, A Muller, V Van Kerkhoven, S Nys, N Drapier (UA,

PPS training

S Hopkins, B Muller-Pebody, N Boxall, G Hughes,

Pilot PPS validation

J Reilly, S Cairns, J Godwin, L Price (CGU and HPS Glasgow), P Gastmeier, S Hansen, B Coignard, O Lyytikainen,

Antv

B C Pari > 200+ experts from EU/EEA Member States, WHO/Europe, ESICM, ESCMID, ESAC, CDC, ...

S Va God (IPH ➤ National PPS coordination teams and participating hospitals!!!

PPS helpdesk

S Hopkins, P Zarb, O Lyytikainen, B Coignard, ML Moro, J Kolman, J Reilly, A Muller, ECDC colleagues

HelicsWin.Net development

K Mertens, X Pretlot (IPH Brussels)

S Ostafiev, A Pedrini (ECDC)

AP Magiorakos, L Sodano, E Liljestedt, S Marma, L Muresan, O Heuer, L Diaz-Högberg, C Quinten, A Economopoulou, A Pharris, G Miniotti, O Mereuta, U Kreisl, TESSy team, A Amato, D Coulombier, A Ammon, et al.

Thank you!

18 November 2017

Website: http://antibiotic.ecdc.europa.eu

Facebook: EAAD.EU

Twitter: @EAAD_EU (#EAAD)